Inside China's race

zar

New member
Hi this a bit long, but you may find it interesting.
Soooooo grab a cup of coffee.

Originally posted to the web:
http://www.wired.com/wired/archive/11.01/cloning_pr.html

Issue 11.01 - January 2003

The First Cloning Superpower

Inside China's race to become the clone capital of the world.

By Charles C. Mann

I am peering into a laboratory microscope at what is sort of a cloned human being.

Sort of a cloned human being because it's only a blastocyst, a very early stage embryo that's floating under the microscope like a tiny bit of soap foam. And also sort of because this blastocyst was created by inserting all the DNA from a human being into the egg of a rabbit.

This little swimming experiment in interspecies biology is taking place not in some high tech office park or Ivy League research lab, but on the top floor of an emergency ward at a shabby hospital complex in mainland China. Downstairs, the reception area is lined with battered folding chairs occupied by patients with makeshift bandages or open wounds. Splashed across the linoleum is what looks like dried blood. But here on the top floor, the elevator opens to a world of $100,000 microscopes, sperm-washing machines, and egg-denucleating micropipettes.

Major scientific journals won't publish research that has been described in the popular media, so I have promised not to divulge identifying details about the experiment or the scientist performing it, whom I'll call Dr. X. But I can say that Dr. X's laboratory is one of three I visited in China where researchers are investigating interspecies clones. And I can also say that this experiment would be illicit if not completely illegal in the United States and most of the developed world. But in China it's all legal, every bit of it, which is a big reason why Dr. X moved here after spending a decade at a public institution in the US.

Dr. X has not the slightest interest in creating an actual cloned human being that will one day walk the earth. Instead, this researcher - like the other Chinese scientists working in the field - is pursuing a much more important goal: using special cells within the blastocyst to grow replacement organs and tissues. The cells, called embryonic stem cells, are arguably the most important subject in biology today, and certainly the most controversial. With new organs made from these cells, biologists believe it will be possible to cure many ailments - and add years, if not decades, to the human lifespan.

In the Americas and Europe, stem-cell research is the subject of such visceral dismay - and so many government restrictions - that it has been nearly impossible for scientists to make progress. Things are different in China. Not only is the field less controversial, but the government is erecting state-of-the-art lab buildings, creating university appointments with princely perks, and providing the capital to establish new biotech firms. If the current trend continues, the next great discoveries in biomedical science - and the industries they spawn - will occur not in San Francisco and Boston but in Shanghai and Beijing.

"I loved working in the States," Dr. X says. The training, the laboratories, the equipment - all were first-rate. So were the colleagues. But because embryonic stem cells are nearly impossible to obtain in the US, this researcher felt it necessary to move to China, even though it meant leaving spouse and children behind. "China," Dr. X says, "is the future."

A new era in medicine

Last May, more than 300 scholars and politicians gathered at Shandong University, in Jinan, about 250 miles south of Beijing, to honor the late embryologist Tong Dizhou. Above a large bronze bust of Tong hung a ceremonial banner emblazoned with the phrase: FATHER OF CLONING.

In 1963, 34 years before Dolly the sheep came into the world, Tong plucked the DNA from a cell in a male Asian carp, stuck it into an egg from a female Asian carp, and produced the world's first cloned fish. In previous decades, researchers had cloned microorganisms and nematodes, as well as amphibians, which readers of Jurassic Park will remember are genetically malleable. But before Tong, nobody had ever managed to clone such a complex organism. To all appearances, the experiment was entirely successful. The cloned carp swam around, ate its fill, and even sired baby carp.

Ten years later, Tong inserted the DNA from an Asian carp into an egg from a European crucian carp, a related species, and created the first interspecies clone. Based on such research, Chinese scientists developed fish-breeding techniques so powerful that the nation now produces more than half of the world's aquaculture harvest. But few if any Western scientists knew of Tong's work, partly because he published in relatively obscure Chinese journals; Acta Zoologica Sinica, in which the interspecies cloning research appeared, didn't even offer the English-language abstracts common in non-Western scientific periodicals. In any case, Tong performed his experiments not to study cloning per se but to investigate the interactions between DNA and the egg containing it. To the Chinese, extending this work to humans seemed pointless. "We have a huge population problem and a one-child policy," says Qi Yaqiang, a demographer at Peking University (which retains Beijing's old Romanized name). "Why would you think about making people in a laboratory?"

Attitudes toward cloning changed in November 1998, when James Thomson of the University of Wisconsin announced the isolation of embryonic stem cells. Five days later, a team led by John Gearhart of the Johns Hopkins University School of Medicine made a similar proclamation. Together the two stem-cell papers, one published in Science, the other in Proceedings of the National Academy of Sciences, created enormous excitement. And suddenly, cloning - or, more precisely, one special type of cloning - seemed to have real value.

Most of the cells in the body can't reproduce themselves; instead, they simply perform their specific function until they die. Creating new cells is the province of stem cells, a distinct class that can, in the jargon, proliferate. Stem cells are located in many parts of the body; the best known are those in the bone marrow, which make billions of red blood cells, white blood cells, and platelets each day. When doctors perform bone-marrow transplants, they're essentially stocking patients with new stem cells that they hope will proliferate, creating healthy new blood cells.

As a rule, stem cells are specialized: Liver stem cells make liver cells, retinal stem cells make retina cells. Some are less specialized than others. Neural stem cells, for example, make three types of brain cell and maybe even blood and muscle cells. The least specialized are those in the blastocyst, the embryonic stem cells isolated by Thomson and Gearhart. Unlike ordinary stem cells, those in the early stage embryo can develop into every kind of cell in the body: nerve, stomach, bone, you name it.

Another cup;) and go to=
In theory,
http://www.cryptogon.com/docs/chinarunner.ht
 
Top